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Abstract

Numerical models rely on the parameterization of processes that often lack a determin-
istic description. In this contribution we demonstrate the applicability of using machine
learning, optimization tools from the discipline of computer science, to develop pa-
rameterizations when extensive data sets exist. We develop a new predictor for near
bed suspended sediment reference concentration under unbroken waves using genetic
programming, a machine learning technique. This newly developed parameterization
performs better than existing empirical predictors. We add this new predictor into an
established model for inner shelf sorted bedforms. Additionally we incorporate a pre-
viously reported machine learning derived predictor for oscillatory flow ripples into the
sorted bedform model. This new “hybrid” sorted bedform model, whereby machine
learning components are integrated into a numerical model, demonstrates a method
of incorporating observational data (filtered through a machine learning algorithm) di-
rectly into a numerical model. Results suggest that the new hybrid model is able to
capture dynamics previously absent from the model, specifically, the two observed pat-
tern modes of sorted bedforms. However, caveats exist when data driven components
do not have parity with traditional theoretical components of morphodynamic models,
and we discuss the challenges of integrating these disparate pieces and the future of
this type of modeling.

1 Introduction

Parameterizations become necessary in morphodynamic models when processes can-
not be described entirely from conservation laws. This is often the case with descrip-
tions of sediment transport, where the mechanics are multidimensional and highly non-
linear (e.g., have thresholds). Parameterizations are often developed through the col-
lection and processing of experimental data. This results in formulas that, because
they have been developed through inductive methods, are subject to many caveats:
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constraints regarding the applicable forcing conditions or the appropriate setting for
use. The inaccuracy of individual predictors has significant consequences in nonlin-
ear morphodynamic models because of the accumulation of error as inaccuracy is
(1) propagated through the nonlinear pieces of the model (e.g., Bolanos et al., 2012)
and (2) propagated in time (e.g., Pape et al., 2010).

Some prediction schemes may perform well only in specific settings or under spe-
cific hydrodynamic conditions (Cacchione et al., 2008; Bolanos et al., 2012). This is an
example of locally optimal predictors, performing well with a single set of data but not
necessarily transferable to other settings (both physical locations and hydrodynamic
conditions). The existence of many locally optimal predictors (each developed from its
own dataset) leads to the problem of selecting the appropriate predictor for a mor-
phodynamic model. One solution to this difficulty is to sidestep it entirely and instead
develop globally optimal predictors from multi-setting datasets that encompass wide
ranges of forcing conditions and independent variables. The hope is that differences in
locally optimal solutions may be attributed to an independent variable that may become
apparent when building a single unified globally optimal model.

The construction of globally optimal predictors is difficult because large multi-setting
datasets with nonlinear relationships and multiple independent variables are difficult
to visualize and interpret. Traditional techniques for developing successful parameteri-
zations include converting multidimensional datasets into low dimensional spaces and
then fitting a curve. However, collapsing data into combined parameters may inher-
ently bias the resultant predictor and may obscure subtle relationships in the data.
One method to detect relationships in large, nonlinear, multidimensional datasets is
machine learning (ML), a class of computational optimization routines. A range of ML
techniques have previously been used successfully to develop data-driven parameter-
izations: artificial neural networks (ANN) have been used to parameterize alongshore
suspended sediment transport in the surf zone (van Maanen et al., 2010), sediment
suspension in the surf zone (Yoon et al., 2013), and near bed reference concentration
(Oehler et al., 2012). Boosted Regression Trees (BRT) have been used to parame-

533

Jaded uoissnosiq

Jaded uoissnosiq

| J1adeq uoissnosiq

Jaded uoissnosiq

ESURFD
1, 531-569, 2013

Hybrid Sorted
Bedform Model

E. B. Goldstein et al.

Title Page
Abstract Introduction
Conclusions References

Tables Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

() ®


http://www.earth-surf-dynam-discuss.net
http://www.earth-surf-dynam-discuss.net/1/531/2013/esurfd-1-531-2013-print.pdf
http://www.earth-surf-dynam-discuss.net/1/531/2013/esurfd-1-531-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

terize suspended sediment reference concentration (Oehler et al., 2012), and genetic
programming techniques have been used to develop predictions of wave-generated
ripple geometry (Goldstein et al., 2013), roughness in vegetated flows (Baptist et al.,
2007), and fluvial sediment transport (Kitsikoudis et al., 2013). Aside from small scale
process descriptions, data driven approaches have also been used as stand-alone
morphodynamic models (Pape et al., 2007, 2010) and to calibrate model parameters
(Knaapen and Hulscher, 2002, 2003; Ruessink, 2005).

In this contribution we focus on the data driven prediction of near bed reference con-
centration under unbroken waves. As the bottom boundary condition for calculating
suspended sediment transport, reducing error is of paramount importance for accurate
predictions of total suspended sediment load. Several parameterizations already ex-
ist, notably Nielsen (1986) and Lee et al. (2004). Recent work by Oehler et al. (2012)
demonstrated the ability of ML predictors to outperform traditional empirical prediction
schemes for reference concentration (i.e., Lee et al., 2004; Nielsen, 1986). The BRT
and ANN model developed by Oehler et al. (2012) is an accurate predictor of reference
concentration, but the predictor is not smooth, physically interpretable, or economical in
length; all problems when attempting to incorporate the results into a morphodynamic
model. Here we use genetic programming (GP) to develop a smooth and physically
interpretable parameterization of near bed reference concentration. GP is a population
based optimization technique where the population is composed of individual predic-
tors (Koza, 1992). Using evolutionary principles (e.g., crossover, mutation) to develop
new solutions the functional form of the predictor and the location and presence of the
variables within a given predictor are adjusted and optimized to find a globally optimum
solution.

The development of a new near bed suspended sediment reference concentration
predictor using GP is the first objective of this work. The second objective is to incorpo-
rate this new predictor (and a previously developed predictor for ripple geometry, built
with GP) into a previously developed model of inner shelf sorted bedforms (Coco et
al., 2007a) to develop a “hybrid” numerical model (Krasnopolsky and Fox-Rabinovitz,
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2006), where data driven components are combined with widely accepted formulas
for hydrodynamics and sediment transport. Previous examples of the hybrid approach
are found in studies of shoreline change (Karunarathna and Reeve, 2013), hydrology
(Corzo et al., 2009) and the atmospheric and climate system (Krasnopolsky and Fox-
Rabinovitz, 2006).

Spatially extensive (10 m—km scale) patches of segregated coarse and fine grained
sediment (Fig. 1) with only slight bathymetric relief (cm—m scale) are present on many
continental shelf systems (Coco et al., 2007b). Unlike most bedforms that develop
solely as an interaction between bathymetry and flow, recent work implicates a sorting
feedback as the mechanism for the development of inner shelf “sorted bedforms” (Mur-
ray and Thieler, 2004; Coco et al., 2007a, b; Van Oyen et al., 2010, 2011). The sorting
feedback is initiated by wave-generated ripples whose size is a function of seabed com-
position and hydrodynamic forcing conditions (e.g., Cummings et al., 2009). Regions
covered with fine sediment support smaller wave-generated ripples than areas man-
tled by coarse sediment. Strong turbulence above the large wave ripples on coarse
domains enhances the erosion of fine material from the bed (and also functions as a
barrier to the deposition of suspended fine sediment). Near bottom currents lead to
the advection of suspended fine material and the preferential settling of suspended
fine sediment in areas where the sea bed is composed of predominantly fine sediment
with small wave ripples (and correspondingly less turbulence induced by the smaller
features). Through self organization this local sorting feedback leads to spatially ex-
tensive features. The numerical model of Coco et al. (2007a) indicates that the sorting
feedback operates in a wide range of forcing conditions (Coco et al., 2007b).

Sorted bedforms show two distinct pattern configurations typified by the location of
the coarse domain, either in the trough of the bedform or on the updrift flank (e.g.,
Goff et al., 2005; Ferrini and Flood, 2005). Van Oyen et al. (2010, 2011), through lin-
ear stability analysis, showed the presence of two distinct pattern modes in the initial
infinitesimal perturbation that correspond to these two distinct configurations. However
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work with finite amplitude models by Murray and Thieler (2004), and Coco et al. (2007a)
did not reveal the presence of two distinct pattern modes.

With the goal of presenting a new hybrid model we first describe the development
of the near bed suspended sediment reference concentration predictor from the large
dataset of Green and coworkers (Green, 1996, 1999; Green and Black, 1999; Vincent
and Green, 1999; Green and MacDonald, 2001; Green et al., 2004; Trembanis et al.,
2004). We then outline the sorted bedform model and the modifications to incorporate
the new data driven components. Finally we show the results of the new hybrid model
(i.e., the appearance of two pattern modes) and discuss advantages and disadvan-
tages of this data driven approach.

2 GP methods
2.1 Dataset

Figure 2 shows the multi-setting field dataset composed of 1748 individual measure-
ments from 6 separate field experiments at different locations in New Zealand. We
briefly summarize the experiments below; a detailed summary of each experiment and
the specific methodology used to determine the near bed suspended sediment refer-
ence concentration (Cy; mg L ), significant near bed orbital velocity (Usig; m s ), wave
orbital diameter at the bed (d,; m), mean grain size (dsy; m) and mean spectral wave
period at the bed (T,,cqn; S) is available in the associated references. A single experi-
ment (Green and Black, 1999; Green, 1999) collected 127 measurements seaward of
the surfzone with mean water depth of 7m. Data from three experiments (Green et
al., 2004; Trembanis et al., 2004) were collected from separate locations in a field of
sorted bedforms (669, 126, and 554 measurements). A single instrument frame was
located in a domain composed of coarse sand (22 m depth) and two instrument frames
were located in fine sand domains (15 and 22 m depth). The fifth experiment was de-
ployed off of a headland in 25 m of water depth (56 measurements; Vincent and Green,
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1999). The final experiment in the database collected 241 measurements in a microti-
dal estuary in a mean water depth of 1.7m (Green and MacDonald, 2001). All data
were gathered in burst-mode with burst durations ranging from 4.267 to 17.06 min. In
addition to the multiple settings and significant amount of data, this dataset is ideal for
application in the sorted bedform model because three datasets are derived from a
sorted bedform field (Green et al., 2004; Trembanis et al., 2004).

2.2 Selection of training, validation, and testing datasets

The database is split into three subsets to be used as training, validation, and test-
ing. The training dataset is used to develop candidate solutions. The validation dataset
is used to evaluate the generality of a predictor: the fitness of GP derived solutions
against more data and ultimately to determine which predictors persist. The testing
dataset is unused and unseen by the GP algorithm, it is reserved as an independent
test of the final predictors (and other published predictors). Because our database does
not cover the entirety of the forcing space with equal density (Fig. 3), the selection and
partitioning of data into these three categories is crucial to develop a well performing
predictor applicable to a range of environments (e.g., Bowden et al., 2002). The C,
dataset is sparse in areas because of a lack of collected data, while dense in other
regions of phase space as a result of similar field settings, forcing conditions and the
number of data points collected in a given experiment. If the data is randomly divided,
there is a potential that the training data excludes data from sparse regions in the
dataset (i.e., coarse grained and/or strong hydrodynamic data). However, in the ge-
netic programming literature we could find no proven “best practice” for selection of the
data subsets or an optimal percentage of training, validation, and testing data (Kuschu,
2002; Panait and Luke, 2003; Gagné et al., 2006).

Informed data selection has been shown to produce better results with ML predictors
than “blind” or random data selection (e.g., Bowden et al., 2002; May et al., 2010). In
this study we select training data through the use of a maximum dissimilarity algorithm
(MDA; Camus et al., 2011). This algorithm is not a clustering routine (where centroids
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denote a representative value of the data in the cluster), but instead a selection routine
(where a centroid represents the most dissimilar data point from the previous centroids;
Camus et al., 2011). This selection routine allows the use of a minimum of training
data that is able to capture the variance present in the entire dataset while leaving the
majority of the data to be utilized as validation and testing.

The maximum dissimilarity algorithm is described in Camus et al. (2011) and we
review the method. Selection starts with the linear normalization of the independent
variables to a value between 0 (minimum value of a given variable) and 1 (maximum
value of a given variable). A single data point, a “seed”, is selected as the first cen-
troid. The algorithm then selects the additional centroids (the number determined by
the user) through an iterative process: Each data point is a 4-dimensional vector (nor-
malized Tiean, Usigs o, ds50 Space) and is associated with a distance to the nearest
centroid. The single data point with the maximum distance between itself and the near-
est centroid is selected as the next centroid (Camus et al., 2011). The MDA routine
continues until the user defined number of centroids is reached and the data is then
denormalized.

There remains significant ambiguity in determining the appropriate number of cen-
troids needed to accurately represent a dataset, especially continuous data (e.g., May
et al., 2010; Goldstein et al., 2013). Selecting too many centroids can rob the valida-
tion and testing datasets of poorly represented data (e.g., large Trean, Usig, do, dsp) and
may tend to cause the GP to produce overly complex predictors (e.g., Gongalves and
Silva, 2013; Oates and Jensen, 1997, 1998). The selection of too few centroids can
leave the testing data with too few data points to capture the variability in the dataset
(Goldstein et al., 2013). We use 40 centroids for the prediction of C, (centroid loca-
tions can be seen in Fig. 3), the same as Goldstein et al. (2013). Data selected as
the centroid locations are used for the training data while the remaining data are used
for validation and testing data. The dataset is split between validation and testing ran-
domly, without using a selection routine. The final breakdown for the datasets is ~ 2 %
training, ~ 49 % validation, ~ 49 % testing.
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2.3 Genetic programming

We operate on this dataset using the ML technique of genetic programming (GP;
Koza, 1992; Poli et al., 2008), where candidate solutions (i.e., randomly generated
initial equations) are evaluated and subsequently modified by adjusting the indepen-
dent variables as well as the mathematical relationships between variables (i.e., the
mathematical form). Independent variables used in this study to predict C, are Teans
Usig» do, dsp- We use Tean, Usig, and dy as separate independent variables for input
to the GP (though they are related) in an attempt to introduce no additional information
about which of these parameters is most relevant. Mathematical operators used in this
study are + (addition), — (subtraction), x (multiplication), + (division), ,/ (square root),

as well as integer powers (e.g. x2, x3, etc.). We omit logical functions in this analysis
(e.g., if-then-else) because we aim to develop a smooth final solution.

Candidate solutions are evaluated based on a “fitness function”, a user defined er-
ror metric that determines how well a given candidate fits the validation data. Mean
squared error (MSE) is used as the fitness function:

(p- b

MSE = (1)
where n is the sample size, p are the predicted values, and b are the observed val-
ues. Candidate solutions that minimize mean squared error are retained and poor per-
forming solutions are discarded. Retained solutions are rearranged, combined, and
manipulated in a probabilistic manner according to combinatorial processes: solutions
“crossover” by combining elements of other solutions to develop a new solution and
“mutations” develop new mathematical expression to substitute or tack on to a previ-
ous solution. Candidate solutions are commonly encoded in GP software as graphs
or “trees”. The evolutionary processes that modify candidate solutions (change of
variables and/or mathematical expression) is accomplished by adjusting tree “limbs”
(Fig. 4). Predictors range from simple (small trees) to complex (large trees) as they are
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recombined in a variety of ways. The range of candidate solutions enables the search-
ing of a large solution space, and the search process continues until a solution with
zero error is found or the routine is halted.

In this study we use a proven software package developed by Schmidt and Lipson
(2009, 2013). This software package, “Eureqa”, outputs a suite of solutions with in-
creasing mathematical “complexity”, where complexity is a count of the numbers of op-
erators and variables are used in the candidate solution. Each solution of a given com-
plexity represents the equation with the least error compared to identically “complex”
candidate solutions. Additionally, solutions must have less error compared to all pre-
vious less-complex solutions. The line that traces the suite of solutions in complexity-
fithess space is the “Pareto front”, and is a graphical representation of increasing fit-
ness with increasing complexity. Many predictors along the Pareto front, from simple to
complex, are retained in the solution set requiring the user to pick a single solution as
the final predictor of choice.

In the results presented here there is no single zero-error solution found, therefore we
cease the search after roughly 10" formulas have been evaluated; continued search
shows only marginal increases in predictive power (and this increase occurs only on
more complex, likely overfit, predictors). Several methods exist for eliminating overfit
solutions (e.g., Gongalves et al., 2012). We use several techniques in parallel to de-
termine a single appropriate solution: (1) bias toward shorter, physically reasonable
solutions, (2) examining “cliffs” in the Pareto front, and (3) examination of solution fit.

Compact, simple solutions tend to offer more generalization power and are likely less
overfit (the minimum description length principle; e.g., O’Neill et al., 2010). Additionally,
shorter solutions reappear with repeat initialization of the genetic programming algo-
rithm, suggesting that these reappearing candidates represent the globally optimum
solutions for a given function size. Longer solutions do not tend to reappear, a result
of a large search space that is not repeated during repeat initializations or the pres-
ence of multiple, equally optimal solutions in the large phase space (i.e., local minima).
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The inherent reproducibility of simple, weakly nonlinear solutions suggests their use as
predictors until further data can be used to justify the use of highly nonlinear predictors.

Areas along the Pareto front where large gains in prediction are obtained with small
gains in solution complexity, “cliffs”, are a natural place to observe potential solutions
(Fig. 5). Schmidt and Lipson (2009) observed many physically relevant solutions at
the bottom of the last “cliff” of a given Pareto front and therefore we focus our search
for a final solution at the “cliffs”. Additionally, as candidate solutions are evaluated by
minimizing error functions, solutions occasionally minimize mean squared error but are
unphysical (e.g., functions that have poor extrapolation ability beyond the domain of
the training data). These solutions must be manually disregarded, as there is as yet no
means of excluding them.

Once a single predictor is selected, it is evaluated using the independent testing data
(data that the ML algorithm has not seen), with the Normalized Root Mean Squared
Error (NRMSE):

\/IVIESE @)

NRMSE =

where b is the mean of the observed values. Additionally we report correlation coeffi-
cient (Pearson’s r) for each predictor evaluated against the independent testing data.
The NRMSE and correlation coefficient are also reported for the reference concentra-
tion predictor of Nielsen (1986) and Lee et al. (2004) evaluated against the independent
testing data.

3 GP results

The GP algorithm output is shown in Table 1 (Note that numerical coefficients listed
in the table are dimensional). This experiment evaluated 10'° formulas to develop the
Pareto front shown in Fig. 5. Cliffs occur along the Pareto front at complexities of 2,
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4,5, 9, and 41 (Fig. 5). Predictors generally show nonlinear dependence on Usig/dSOv
qualitatively similar to the predictors developed by Nielsen (1986) and Lee et al. (2004),
which both show dependence on the modified Shields parameter. We focus our analy-
sis on the last cliff before the proliferation of very complex, nonlinear terms (solution 9):

0.328Ujq ?
Co = 3)
0.0688 + (1000ds,)

Note that the coefficients of Eq. (3) are dimensional. Reserved testing data is used
as an independent dataset to compare the GP predictor as well as those developed by
Nielsen (1986) and Lee et al. (2004): the NRMSE for each predictor is 1.2, 2.6, and
1.3, respectively, and the correlation coefficient is 0.62, 0.57, and 0.57, respectively.
Results are shown in Fig. 6. The GP derived predictor outperforms other predictors
based on both the NRMSE and correlation coefficient. However, we note that at very
low concentrations the performance of Eq. (3) deteriorates.

4 Hybrid Sorted Bedform Model overview

We now incorporate this new C, predictor into a previously described model of in-
ner shelf sorted bedforms developed by Coco et al. (2007a) that is based on the
initial work of Murray and Thieler (2004). We briefly review the model below; a de-
tailed treatment of the sediment transport relations, hydrodynamic equations and their
computational implementation are presented in Coco et al. (2007a). A three dimen-
sional model domain with periodic horizontal boundary conditions is used to represent
a seabed composed of two grain sizes (0;pse = 0.0005 m and d;;, = 0.0002 m; fall ve-
locity Weogree = 0.07Ms™" and Wy,e = 0.02ms™"). An initially flat bed (with slight bathy-
metric perturbation below 0.01 m) has a bulk composition of 70 % fine sediment and
30 % coarse sediment with individual cells that deviate from this ratio no more than
10 %. The model domain has a plan view size of 500 m x 500 m, a vertical resolution
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of 0.05 m and a horizontal resolution of 5m. Small scale sorted bedforms are mod-
eled in the interest of computational efficiency (observed sorted bedforms range from
the scale modeled to kilometers in plan-view). In the experiments presented the ini-
tial water depth is 9 m, the wave period is 10 s, wave height is 2m, the mean current
is 0.2ms™", and the current is unidirectional. Sediment transport, computed indepen-
dently for each size fraction, occurs only as suspended load and results in the change
of bed elevation.

Suspended sediment transport is based on a simplified advection-diffusion frame-
work, neglecting horizontal diffusion and assuming steady state suspended sediment
concentration profiles (Murray and Thieler, 2004; Coco et al., 2007a). The flux of sus-
pended sediment (g4, ), €valuated separately for each size fraction s, is the verti-
cally integrated product of the current velocity profile (V(z)) and the suspended sedi-
ment concentration profile (C;(z) where z is the vertical coordinate) combined with a
“morphodynamic diffusion” term to incorporate the role of bed slope (Vz) on sediment
transport:

1
qsusp,s = /CSde - VSS_VVS UVSVVZ (4)
16Ep
= —C 5
Ys=Ve 3rw, ¢ (5)

where U, is the maximum wave orbital speed at the bed (m s™'; evaluated with linear
wave theory), vy, is the morphodynamic diffusion coefficient, p is the density of water,
C4 is the drag coefficient, and E is an efficiency factor (set to 0.035). The second
term in Eq. (4) represents a “morphodynamic diffusion” term derived from energetics
arguments (Bowen, 1980; Bailard, 1981). The calibration parameter in this framework
is vy, and is adjusted to maintain an order of magnitude difference between the two
terms on the right hand side of Eq. (4), similar to the methodology of Calvete et al.
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(2001). For all experiments in this contribution y, = 0.07. The role of this parameter is
addressed further in the discussion section.

Previous work by Coco et al. (2007a) demonstrates negligible sensitivity to different
vertical current profile parameterizations (i.e., descriptions that include current-wave
interactions). In these experiments we use a logarithmic vertical current profile:

1 z
V(2)=Ulog % (6)

where U" is the shear velocity, and « is the von Karman constant. The current profile
begins at the roughness height z, which is related to wave-generated ripples (van Rijn,
1993):

1
20 = 55 (2050 +2810) ™

where 1 is ripple height and J is ripple steepness.
The wave period-averaged vertical suspended sediment profile above wave-
generated ripples (Cs) is calculated based on Nielsen (1992):

WsZ

Cs(2) = Cys€ 7 (8)

where C, ; is the near bed reference concentration for grain size s and ¢ is the ver-
tical sediment diffusivity. Coco et al. (2007a) relied on the formulation developed by
Nielsen (1986) to determine the near bed reference concentration. We use the new
GP derived formulation developed in the previous section. To make the GP derived C,
predictor compatible with this model formulation, we assume Ugq = U,, and ds, = ds
and therefore Eq. (3) becomes:

0.328U, 2
Co= = 9)
0.0688 + (1000d)
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The reference concentration is applied at the height of the ripple crest, as in Coco et
al. (2007a). In contrast to the work of Coco et al. (2007a) in this work we evaluate the
sediment diffusion coefficient based on the work of Nielsen (1992):

£s = Qk,U, (10)

kg = 2510 (11)

where k; is the equivalent roughness and Q is a scaling coefficient. Thorne et al. (2009)
demonstrated that this parameterization underpredicts vertical sediment diffusivity by a
factor of ~ 2 when using the original value of Q = 0.016 suggested by Nielsen (1992).
We therefore set Q = 0.032. Ripple prediction is performed using a new equilibrium
scheme developed using GP by Goldstein et al. (2013):

0.3130}, (1000ds,)

_ 12
1= T12+2.18(100005,) (12)

= 3.42 (13)
)

2
( 2 )

We evaluate the mean grain size at each model cell i (ds ;) at each time step as:

d50,i = (1 - Bcoarse,i) dfine + Bcoarse,idcoarse (14)

where B.,sc i i the percentage of coarse sediment in the active layer at location /,
and d;,. and d,.4sc are the diameter of the fine and coarse fraction, respectively. An
active layer vertically restricts sediment-flow interactions. All experiments presented
here have a constant active layer thickness of 0.15 m. Sensitivity analyses performed by
Coco et al. (2007a) demonstrate that the nature of the sorting feedback is not changed
by modification of the active layer thickness.
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5 Hybrid Sorted Bedform Model results

The initially flat well mixed conditions can be seen in Fig. 7. This configuration is un-
stable, and sorted bedforms emerge within 50 model days to form the rhythmic segre-
gated pattern shown in Fig. 7. This self organization is a consequence of the sorting
feedback. Compared to previous modeling, bedforms develop more slowly in the hy-
brid model. The flux of suspended sediment is smaller for the hybrid model because
of the change in reference concentration predictor. Bedforms show an abundance of
pattern defects (bifurcations, terminations, and “eyes”), and after initial development
the pattern continues to develop through time as a result of bedform interactions: a
process of coarsening and pattern maturation occurs as defects move through the sys-
tem and coarse domains merge to form combined features. This leads to fewer pattern
elements (coarse domains) seen through time in Fig. 7. Under unidirectional forcing
the sorted bedforms migrate slowly in the direction of the current and profile views
show that coarse sediment domains are located along the updrift flank. Fine material
is advected downdrift and deposited on the lee side of the coarse domains. Coarse
sediment is also transported downdrift, but its mobility is limited on upslope surfaces
and in fine domains (where wave-generated bedforms are smaller), therefore it tends
to occupy the updrift flank of the bedform only.

Previous work by Coco et al. (2007a) showed the effect of variations in the size of the
fine fraction while the coarse fraction size was held constant. In these experiments we
evaluate the reverse: fine fraction diameter is held constant (d;,. = 0.0002 m; Wspe =
0.02ms‘1) while the coarse fraction diameter is varied between 0.0003—0.001m
(Weoarse = 0.04-0.12m s™"). This range of sizes for the coarse fraction is similar to the
values found in sorted bedform fields worldwide (Coco et al., 2007b).

Results from this analysis can be seen in Fig. 8 (sorted bedform wavelength and
height are evaluated after 100 model days). Similar to Coco et al. (2007a) sorted bed-
forms do not appear when the grain size contrast between size fractions is too small
(Ghine/ Asoarse < 0-5). When coarse grains range from 0.004-0.008 m in diameter, larger
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coarse sediment tends to cause sorted bedforms to appear faster, decrease in wave-
length, and increase in height. Within this range of grain sizes the coarse domain is
located along the updrift flank and bedforms migrate in the current direction.

When coarse sediment diameter is larger than 0.008 m, bedforms are strikingly dif-
ferent: bedforms develop faster, wavelengths and height increase significantly, coarse
sediment is only present in the trough of the bedform (not along the updrift flank) and
bedforms migrate upstream (Fig. 9). Bedforms migrate rapidly upcurrent as a result of
the decreased mobility of coarse sediment: coarse material is not mobile enough to be
transported along the updrift flank of the bedform and instead remains in the trough.
As fine sediment is advected past the coarse domain in the bedform trough, it can be
deposited on the updrift side of the bedform (there is no coarse sediment to prevent
its deposition). Along the downdrift side of the bedform the downstream increases in
downslope gradient (convex-upward curvature) tends to cause the erosion of bed ma-
terial and its suspension. This suspended material is advected over the coarse domain
(the bedform trough) and subsequently deposited on the updrift side of the following
(downdrift) bedform.

In profile view a contiguous layer of coarse sediment exists directly below the sorted
bedform field (Fig. 9). This coarse layer occurs at the interface between the well-
mixed sediment below (the undisturbed model initial conditions) and the reworked sedi-
ment above, a consequence of limited coarse sediment mobility and bedform migration
(Goldstein et al., 2011). As bedforms migrate the position of the sorted bedform trough
changes. Fine sediment under the bedform trough, once too deep to experience fluid-
sediment interactions, is excavated and suspended. Winnowing of fine sediment and
coarsening locally in the bedform trough, repeated as the bedforms migrate, results in
the development of a horizontal layer of buried coarse sediment, a “sorting lag”.
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6 Discussion
6.1 GP derived Cy predictor

The newly developed C, predictor has a nonlinear dependence on ds, and Uy, similar
to other previous empirical predictors (Nielsen, 1986; Lee et al., 2004). This depen-
dence is not imposed, but instead a result of the datasets used in the GP algorithm.

The GP reference concentration predictor relies on Ugg, While the sorted bedform
model uses U,. In the hybrid model we assume U4 = U,, where U, is calculated
from linear wave theory. Additionally we direct the reader to other methods available to
estimate Ug;q from surface wave parameters (e.g., Wiberg and Sherwood, 2008).

Ripple geometry was not used as an independent variable in the construction of
the C, predictor. Dolphin and Vincent (2009) recently suggested that ripple geometry
may not aid in the prediction of C,, contrary to Nielsen (1986) and Green and Black
(1999). Though we do not have data to either support or refute this claim, we can offer
our results as an example of a well performing prediction of reference concentration
without the explicit inclusion of ripple geometry. However, the nonlinear nature of the
reference concentration prediction and the constants embedded within Eq. (3) suggest
that ripple configuration may be encoded within the predictor, either as a cause of the
nonlinearity or a determinant of the constants.

The C, predictor developed in this study is an equilibrium predictor therefore the role
of time variance of C, is not addressed (e.g., Vincent and Hanes, 2002). However, the
data was collected in burst mode, a technique that involves time averaging. Burst mea-
surements may reduce the effect of some time dependent processes (e.g., advected
clouds of sediment, wave groups, etc.). Using the independent testing data, the new
GP predictor has a lower NRMSE and higher correlation coefficient than the Nielsen
(1986) and Lee et al. (2004) predictors. Notably, more energetic conditions are required
to move sediment using the GP predictor as compared to the Nielsen (1986) prediction
scheme previously used in the sorted bedform model.

548

Jaded uoissnosiq

Jaded uoissnosiq

| J1adeq uoissnosiq

Jaded uoissnosiq

ESURFD
1, 531-569, 2013

Hybrid Sorted
Bedform Model

E. B. Goldstein et al.

Title Page
Abstract Introduction
Conclusions References

Tables Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

() ®


http://www.earth-surf-dynam-discuss.net
http://www.earth-surf-dynam-discuss.net/1/531/2013/esurfd-1-531-2013-print.pdf
http://www.earth-surf-dynam-discuss.net/1/531/2013/esurfd-1-531-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

6.2 Hybrid Sorted Bedform Model

The “hybrid” version of the sorted bedform model is able to reproduce the sorting feed-
back using new parameterizations built from data. The sorting feedback hypothesized
by Murray and Thieler (2004) is robust to changes in the mathematical description of
the processes in sediment transport and hydrodynamics on the continental shelf, and
hybrid model results are comparable to previous modeling efforts (Murray and Thieler,
2004; Murray et al., 2005; Coco et al., 2007a). The hybrid model has additional ad-
vantages beyond being more tightly coupled to observational data, most notably in
favorable comparison to previous observational and analytical work.

Observational work has previously observed two distinct varieties of sorted bed-
forms, those with coarse sediment in the trough and those where coarse sediment is
located on the updrift flank (Goff et al., 2005; Ferrini and Flood, 2005). Van Oyen et
al. (2010, 2011) found that these two pattern modes appear in linear stability analysis.
Mode 1 bedforms, where coarse domains are located in the bedform trough, have a
faster growth rate when waves and currents are weaker and result in bedforms with
longer wavelength, larger amplitude, and faster migration rates. Mode 2 bedforms,
where coarse grains appear along the updrift flank of the bedform, have a faster growth
rate when waves and currents are stronger and results in bedforms with smaller wave-
lengths, smaller heights, and slower migration rates. Yet results from linear stability
analysis are applicable only at the scale of an infinitesimal perturbation.

Results from the finite amplitude hybrid model also show that coarse domains can
occur either on the updrift flank of the sorted bedform or collocated with the bedform
trough, matching the previous observation and analytical work. The presence of two
distinct pattern modes occurs while current and wave conditions remain unchanged
but coarse grain size is varied. When coarse grains are smaller (essentially identical
to increasing wave conditions in terms of increasing coarse sediment mobility) bed-
forms conform to Mode 2 expectations with smaller features, slower migration rates,
and coarse sediment along the updrift flank of bedforms. When coarse grains are larger
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(essentially identical to decreasing wave conditions in terms of decreasing coarse sedi-
ment mobility) bedforms show characteristics of Mode 1 features with larger, bedforms,
faster migration rates, and coarse sediment in the bedform trough.

Several features of Mode 1 bedforms warrant additional attention. Linear stability
analysis (Van Oyen et al., 2010, 2011) suggests infinitesimal Mode 1 bedforms should
migrate in the current direction, at odds with the finite amplitude hybrid model. Fur-
thermore, Mode 1 bedforms develop in the linear stability analysis as a result of a
bathymetric-flow feedback (Van Oyen et al., 2010, 2011). The finite amplitude hybrid
model presented here does not parameterize hydrodynamics at small enough scales
to permit the development of bedforms as a result of a flow-bathymetry feedback. In
contrast to the linear stability analysis, Mode 1 bedforms in the hybrid model develop
as result of the sorting feedback operating at finite amplitude. Future work with more
detailed hydrodynamic parameterizations could shed light on the interplay between
flow-bathymetry interactions and the sorting feedback in the Mode 1 regime at finite
amplitudes. However, these results do suggest that the finite amplitude hybrid model
is able to capture the dynamics observed in the field and suggested by the analysis
of infinitesimal features through linear stability analysis. The presence of two distinct
pattern modes in the hybrid model is a direct result of incorporating new data driven
parameterizations of the sediment transport process.

There are additional pattern scale consequences to adjusting the sediment trans-
port formulations. The new C, predictor requires energetic conditions to move coarse
sediment. This matches the observations and interpretations of Green et al. (2004),
Trembanis et al. (2004), and Trembanis and Hume (2011), who suggest that energetic
conditions are the only time when the coarse sediment of sorted bedforms is mobile.
However lower coarse sediment mobility results in the creation of more pattern defects,
a common feature of field examples of sorted bedforms (e.g., Fig. 1). Furthermore, after
the work of Werner and Kocurek (1997, 1999), defects have been recognized as a fun-
damental variable in pattern scale dynamics of bedforms (Huntley et al., 2008; Maier
and Hay, 2009; Goldstein et al., 2011; Skarke and Trembanis, 2011). The presence
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of additional defects in the hybrid model may exert fundamental controls on pattern
evolution.

The hybrid model is able to reproduce sorting feedback and two pattern modes when
successfully calibrated. Calibration is accomplished by adjusting the variable y,, in the
morphodynamic diffusion term, Egs. (4) and (5). The results shown in this contribution
have y, = 0.07. The sorting feedback and the development of two sorted bedform pat-
tern modes occur in the range of y, = 0.05-0.08. This range contrasts with the work of
Coco et al. (2007a, b) where the y, term could be adjusted at least one order of magni-
tude. This more limited calibration is the result of using multiple nonlinear elements in
the construction of the model. Specifically the morphodynamic diffusion term (that y,
modifies) is highly nonlinear (i.e., « Uf’v) and is built from energy-based theory (Bowen,
1980; Bailard, 1981). Coco et al. (2007a) relied on a parameterization of C, that scaled
with US, effectively scaling the two terms of Eq. (4) in a similar manner. In contrast our
new C, predictor scales with U‘,zv, and therefore does not scale in a similar manner to
the morphodynamic term (U‘,SV). We suggest that this mismatch, coupled with the strong
forcing condition that is required to move sediment in the model (i.e., large U,), has
lead to a smaller permissible parameter space where the morphodynamic term and
the new GP derived are interoperable. We define the permissible parameter space by
the scaling argument made previously by Calvete et al. (2001): y, should be set to a
value that maintains the ratio between the two terms on the right side of Eq. (4) to ~ 1
order of magnitude. If y, is set too high, the slope dependent term is too strong and no
bathymetric perturbations develop. If y, is set too low, nonphysically steep bathymetric
perturbations develop. These results highlight the need to test the Bailard (1981) term
in a range of conditions to see if this description (or others) is valid. Though this mor-
phodynamic diffusion term is often used in morphodynamic models, we could find no
instance where this term has been tested in a wide range of conditions.

Finally, the promising results of data driven parameterizations as components in the
sorted bedform model suggests that this approach could be extended to other mor-
phodynamic models and other parameterizations. A specific example from this work
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is the parameterization of vertical sediment diffusivity (or, more generally, the shape
function that described the vertical suspended sediment concentration profile). Recent
work has begun to investigate the fast scale dynamics of vertical sediment diffusion
over ripples (e.g., Davies and Thorne, 2005; van der Werf et al., 2007; O’Hara Murray
et al., 2011) and how best to parameterize this process in large scale coastal models
(Amoudry and Souza, 2011; Amoudry et al., 2013). Traditional equilibrium parameteri-
zations have also been evaluated with newly collected data (e.g., Thorne et al., 2002,
2009; Bolanos et al., 2012). More data, collected in a range of conditions, would en-
able a data driven approach to the parameterization of the vertical suspended sediment
profile shape.

7 Conclusion

A new predictor for near bed reference concentration developed using genetic program-
ming performs better than previous empirical parameterizations. This predictor is incor-
porated, along with previously developed predictors for ripple morphology (developed
by GP), into a new hybrid model of sorted bedforms. This modeling strategy is a viable
option when large data sets can be used to construct data-driven subcomponents of
a morphodynamic model. The sorting feedback is relatively invariant to changes in hy-
drodynamic and sediment transport parameterizations. However, the new hybrid model
is able to generate novel behavior in the sorted bedform model: sorted bedform mor-
phology changes when the size of the coarse fraction is modified. This model behavior
matches field observations showing two distinct sorted bedform patterns and analytical
work predicting the presence of two separate pattern modes.
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Fig. 3. Visualization of the range of conditions in the C, dataset. Each plot represents a 2
dimensional projection of the entire data set onto the set of axes shown. For instance, the first
panel with data projected onto the d, — Uy plane shows no information about ds, Or Treqn-
Stars denote centroid locations (training data), while points denote unselected data (validation
and testing). Note that centroids are distributed throughout the dataset.
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Fig. 4. Example of the genetic programming process. Potential solutions are encoded as a
population of trees. Here a hypothetical population of two solutions is shown. The first solution Full Screen /. Esc
has a low MSE and therefore persists to the next iteration. The second solution has a high MSE
and therefore is subject to removal, mutation, or crossover. Here is an example of “crossover”
whereby the old solution is combined with parts of other, better performing solutions to create
a new potential solution in the next iteration.
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Fig. 5. Reference Concentration Pareto front; MSE is mean squared error of candidate solution
versus the validation data set. Complexity is a quantification of the candidate solution length Full Screen / Esc
(both mathematical operators and variables).
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Fig. 7. Plan view and profile view of sorted bedform model output (note the vertical exaggeration
of profile view). Black and white pixels indicate fine (d,, = 0.0002m) and coarse (d,yase =
0.0005m) sediment, respectively. Current direction is from lower left to upper right and the
profile is taken along this axis. The well mixed and flat initial condition is shown in the top panels,
Sorted bedforms appear within 50 days (middle panels) and are well developed by model day
100 (bottom panels). These are Mode 2 bedforms; note that coarse domains appear on the
updrift flank of the bedforms and wavelength and height are relatively small
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tical to Fig. 7 except d.yaree = 0.001 m. From identical initial conditions sorted bedforms appear Full Screen / Esc
much faster and are prominent features by 50 model days. Note that coarse domains appear
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